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Abstract. The spectrum of the Mossbauer gamma-radiation, passed through a resonant 
absorber vibrated at ultrasonic frequencies, is studied in a new approach. An analytical 
expression is derived for the line profile, which consists of an infinite series of equidistant 
satellites. Their intensities depend on both the vibration amplitude and the absorber 
thickness. Certain ideas appearing in the investigations so far are critically discussed. Most 
of the phenomena considered can be explained by the classical waves dispersion theory. 

1. Introduction 

It is well known that the additional RF vibrations, when applied to either the source or 
the absorber in conventional Mossbauer experiments, modify the line shape of the 
resonantly transmitted radiation, resulting in a splitting of the original single line into an 
infinite set of sidebands, equidistantly spaced from it by frequencies which are multiples 
of 0, the frequency of the external perturbation (Ruby and Bolef 1960). This 
phenomenon can be explained adequately from either a wave point of view, in terms of 
a frequency modulation of the photon wave (see the review of Makarov and Mitin 
(1976)), or from a corpuscular one-in terms of creation and annihilation of acoustic 
phonons which interact with the gamma-radiation field (Mishory and Bolef 1968). Both 
approaches lead to the same results, which is a remarkable development of the 
corpuscle-wave dualism. 

Extending this analogy, certain experimental investigations have appeared in the 
last few years (Asher et a1 1974, Cashion and Clark 1979), concerning another 
phenomenon that might be classified as an ‘amplitude modulation of gamma quanta due 
to time-dependent resonant processes’. In the experiments of Asher et al, Mossbauer 
gamma-radiation, irradiated by a single line source, is passed through a filter containing 
resonant nuclei to which certain constrained RF oscillations could be applied by a 
piezo-electric transducer, and the emerging radiation is analysed by a second absorber 
using conventional techniques. In such a case the vibrating filter changes its resonant 
absorption ability periodically for a time which is comparable with the lifetime of the 
excited Mossbauer state, causing a substantial change in the spectral distribution of the 
radiation passed in a manner analogous to the amplitude modulation of the common 
electromagnetic waves. 

In the experiments of Cashion and Clark, the source is also performing ultrasonic 
vibrations with respect to the lab frame, in-phase or in anti-phase with the modulating 
absorber. Thus, in this case both the amplitude and the phase modulation are 
responsible for the spectrum observed. 
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A splitting of the spectrum into a set of equidistant satellites has been observed in 
both experiments. The results of Asher et a1 have been explained by the authors 
qualitatively using the optical theorem, applied to the forward-scattered component of 
the radiation. However, their approach yields an infinite set of coupled differential 
equations for the partial amplitudes, which can be solved in a few special cases, in 
particular when the modulating absorber is thin. At the same time, it is beyond doubt 
that the expected splitting effect should be increasing with the modulator thickness. 

This difficulty may be avoided, and an attempt is proposed in the present work to 
describe quantitatively the phenomena just discussed. 

The necessary results may be obtained using the theory developed by Lynch et a1 
(1960) and Harris (1961) for the transmission of the Mossbauer radiation through a 
stationary resonant absorber. Lynch et al have performed a simple classical treatment, 
assuming the absorber to be composed of a collection of single-level damped harmonic 
oscillators; then each frequency component of the source radiation field is changed in 
amplitude and phase as it passes through the absorber, according to a frequency- 
dependent index of refraction. The pure quantum-mechanical calculations of Harris 
confirm perfectly the results from the classical theory. An explanation of the surprising 
circumstance that it should be possible to provide a macroscopic description of the 
absorber in this case is suggested by Thieberger et a1 (1968) by the fact that the average 
contribution modifying the incident wave at a point inside the absorber is due to the 
mutually in-phase, coherently forward-scattered waves from the oscillators. 

2. Theory 

So, we are interested in the spectral distribution W ( w )  of the gamma radiation from a 
single line Mossbauer source, at rest in the lab frame, which emerges through a resonant 
absorber (modulator) with an effective thickness D, performing as a whole constrained 
harmonic oscillations at frequency fl/2.rr and amplitude A.  

It is convenient to consider for a time a frame at rest with the resonant absorbing 
nuclei of the modulator. In this frame, the time dependence of the source radiation 
would be 

, (1) a ( t )  = eiwot-rt/2 i x A  sin n(t+q) e 

where x = 2r/A is the wavenumber of the photon, wo and r are the resonant frequency 
and the halfwidth of the irradiating nuclear state, and 7 is the phase of the source-to- 
modulator vibrations at t = 0. 

The Fourier decomposition of (1) is 

m eiknq 
u ( u ) =  Jk(xA) 

k=-m r/2 +i(w - w o  - kn)’ 

The modulating filter is at rest in the current frame, so that each Fourier component is 
modified, as it passes through it, in accordance with the theory of Lynch et a l :  

where Zzwb denotes the absorber’s resonant energy. 
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The corresponding amplitude in the time domain is 
m 

a'(t) = I-, d o  a ' (w)  e'"'; 

this integral may be solved analogously to that of Hamermesh (Lynch et a1 1960): 

al(t) = C Jk(xA) eiknTexp(iwbt-+rt> 
m 

k=-m 

i(wo - wb + kn) ' [ D r / 4  ] (Dr/4t)"/2J,[2(Dr/4t)"2], 
n = O  

(4) 

or, alternatively, 

(4') 
The choice between (4) and (4') is determined by convergence requirements for the 

At this stage it is possible to return in the lab frame: 
sum over n. 

a"(t) = a'(t) exp[-ixA sin n(t + q)]. ( 5 )  

Now, we need the Fourier transform of (5 ) .  It has the form 
CO dt ,-i(w+ln)t I 

a 0). (6)  
-irn" fom 

a l l ( w )  = dt a II ( t )= Jl(xA)e fom 1=-m 

Denoting in (6) 

r/2 + i(w - wb + la) 
D r / 4  

= (~ r /4 t ) ' / ' ,  f f =  9 

one comes to the integral 

L 
A, =- J dx e-ax2xnc1Jn(2x). 

D r / 4  o 

This integral may be solved and the result is (Gradsteyn and Rylhik 1963) 

n+l~F1 n + l ; n + l ; -  , ( 4a -4) 
2 2flr(n + 1) 

~ r / 4  2"+"1?(~ + I ) ~  
A ,  =- 

(7) 

where IFI(CU ; p ; z )  is the confluent hypergeometric function. Using the relation 
~FI(CY ; CY ; z )  = exp(z), one obtains 
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The sum over rz appearing in (9) is a geometric progression, which is convergent for 
each w if loo - wb + kSll< r/2. If this condition is not satisfied, it is necessary to use the 
alternative expression (4') for a' ( t ) .  Then the corresponding integral would have the 
form 

Using the power series expansion of the function 

1 P  71.2 e- 1F1(1;n+1;-/3)=l----+ 
n + l  I! ( n + l ) ( n + 2 )  21 "" 

it is easy to prove that the following is true: 

where p = I/g. 
Combining (9) and (lo), one may write 

where 

- 2 ( iDT/4 ) n  f (-Dr/4) '  
n = i  wo-wb+kO p = ~  ( n + p ) ! [ F / 2 + i ( w - w b + I n ) l P * -  

if lwo-wb+kR/#O. (12) 

Finally, the spectrum of interest may be obtained by squaring the modulus of (1 I j  
and averaging the result over the initial phase 77. The last operation yields certain 
additional restrictions of the form 

3. Results and discussion 

Results from the numerical calculations performed are listed in figures 1 to 4. All the 
spectra are convoluted by a single natural width Lorentzian in order to demonstrate 
what may be seen in a real experiment. 
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Figure 1. The spectrum of the transmitted radiation for D = 5, wh - wo = 0 and for several 
amplitudes of vibration. 

It is seen from ( 1 1 )  that the spectrum consists of an infinite set of satellite lines, 
shifted from the source line in frequency by multiples of 0. We would like to discuss 
here some essential features of the spectrum. 

(a) If wb - w o  = 0 (i.e. no isomer shift between the source and the modulating 
absorber), the spectrum is symmetric with respect to wo. In fact, if one writes ( 1  1) in the 
general form 

where V = w - wo = w - wb, then, replacing V by - V, k by -k, 1 by -1, and using the 
well known property J-"(2) = (-l)'Jn(t), one obtains 

Then, obviously, 
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Figure 2. The spectrum of the transmitted radiation for amplitude xA = 1, wb - w o  = 0 and 
for several thickness parameters. 
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Figure 3. The spectrum area for U &  - W O  = 0 against the vibration amplitude xA and the 
absorber thickness D. 
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Figure 4. The spectrum of the transmitted radiation for D = 5 ,  
amplitudes of vibration. 

-oo = 0 and for several 

The quantity k + 1 + k'+ I '  is always an even number due to the presence of the S 

(b) If the modulating filter is at rest (i.e. A = 0), then (11) describes the well known 
symbol; thus W ( - V ) =  W ( V ) .  

spectrum of the radiation passed through a thick stationary absorber: 

In this case a typical fallout of the line profile (which is clearly observable in figure 1 
for xA < 1) appears at the absorber's resonant frequency wb, because of the resonance 
self-absorption of the radiation. Its depth increases with the absorber thickness D. 

If xA +CO, then the spectrum is reduced to a single natural width Lorentzian, 
centred at wo (see figure 1, xA = 5) .  Therefore, a region in the vibration amplitudes 
exists wherein the expected splitting effect is maximal. This prediction is in agreement 
with the experiments of Asher et al. Numerical calculations indicate that this region is 
at xA = 1.0. 

(c) When the effective thickness of the absorber is small, D + 0, then the spectrum 
tends to a single Lorentzian line: 
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The effect of the amplitude modulation of the gamma radiation increases with the 
modulator thickness D. This is seen from figure 2, where the spectra at the same 
amplitude (xA = 1) are presented for several values of D, as well as from figure 3, where 
the spectrum area is plotted against the vibration amplitude A for several values of D. 
The last diagram might serve for evaluating the modulator thickness or its vibration 
amplitude, if one of these characteristics and the area under the experimental line are 
known. 

(d) The spectrum of Mossbauer radiation, transmitted through a vibrated filter 
which has a non-zero isomer shift with respect to the source, wb - w o  = SZ ,  is shown in 
figure 4. This case refers to the second experiment of Asher et al, when the source 
radiation resonantly excites the modulator substate, corresponding to annihilation of 
one phonon. The spectrum is asymmetric, which is more significant at low modulation 
indices, xA < 2. However, the relative intensities of sidebands with respect to the 
unshifted line are considerably smaller in this case, making the splitting effect difficult to 
observe. 

(e) The experiments of Cashion and Clark can also be described in the framework of 
the formalism proposed. Since the source has also been vibrated ultrasonically in this 
case, then the spectrum of the registrated radiation would always consist of additional 
lines irrespective of the vibration state of the absorber, due to the frequency modula- 
tion. If the source and the filter are vibrated in-phase, then the line shape of the 
radiation passed would be 

and in the case of an anti-phase motion the spectrum would have the form 

where c k l  is defined by (12), and the symbol (. . .) stands for the necessary averaging 
over the initial phase 7. 

i t  is important to stress that the spectrum in this case would also be symmetric, if 
there is no isomer shift between the source and the modulator (wb - w o  = 0). This 
assertion may be proved in an analogous manner to that in (a). The asymmetry of the 
spectrum, observed by Cashion and Clark, may be explained quite naturally by the 
presence of a non-zero isomer shift. The source "Co(Cu) has an isomer shift of 
+On31 mm s-' with respect to the stainless steel absorber; hence, the negative sidebands 
of the source radiation are absorbed, in general, more significantly than the positive 
ones. This qualitative conclusion might be checked by experimenting with a source and 
absorber without isomer shift, when the spectrum would be symmetric, as well as by 
using a source with a negative isomer shift with respect to the absorber, when the 
negative sidebands of the spectrum would be dominant, in the framework of the present 
approach (see equation (18)). 

(f)  The theory developed in this work may be extended to describe the actual 
experiments of Asher et al, considering a combination of a source at rest and two 
absorbers vibrating in anti-phase. It may be proved that there is no asymmetry in the 
first of Asher's experiments (using Pd(Fe) filters). So, one may deduce that the presence 
of a certain isomer shift between the components of the considered system is the reason 
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for observation of asymmetry in the spectrum rather than the retention of phase 
coherence. 

As we have assumed that the source nuclei are being vibrated as a whole, then the 
effects of reduction of the resonance self-absorption of the radiation due to standing 
waves in the (eventually) vibrating source could not be of account in the present 
approach. These effects are only significant at high acoustic powers of the ultrasonic 
field applied (see Mishory and Bolef (1968) and Mitin (1978)). 
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